Oceans Melting Greenland

Publications supported by the OMG mission:

71 Slater, D. A., Carroll, D., Oliver, H., Hopwood, M. J., Straneo, F., Wood, M., et al. (2022). Characteristic depths, fluxes, and timescales for Greenland's tidewater glacier fjords from subglacial discharge-driven upwelling during summer. Geophysical Research Letters, 49, e2021GL097081. http://dx.doi.org/10.1029/2021GL097081. b
70 Khan, S., Jonathan L. Bamber, Eric Rignot, Veit Helm, Andy Aschwanden, David M. Holland, Michiel van den Broeke, Michalea King, Brice Noël, Martin Truffer, Angelika Humbert, William Colgan, Saurabh Vijay, Peter Kuipers Munneke. (2022). Greenland Mass Trends From Airborne and Satellite Altimetry During 2011–2020. JGR Earth Surface, 127, e2021JF006505. https://doi.org/10.1029/2021JF006505. b
69 Muilwijk, M., Straneo, F., Slater, D. A., Smedsrud, L. H., Holte, J., Wood, M., Andresen, C. S., & Harden, B. (2022). Export of Ice Sheet Meltwater from Upernavik Fjord, West Greenland, Journal of Physical Oceanography, 52(3), 363-382. https://doi.org/10.1175/JPO-D-21-0084.1. b
68 Rignot, E., Bjork, A., Chauche, N., Klaucke, I. (2022). Storstrømmen and L. Bistrup Bræ, North Greenland, Protected From Warm Atlantic Ocean Waters. Geophysical Research Letters, 49, e2021GL097320. https://doi.org/10.1029/2021GL097320. a
67 Davison, B. J., Cowton, T., Sole, A., Cottier, F., and Nienow, P.: Modelling the effect of submarine iceberg melting on glacier-adjacent water properties, The Cryosphere, 16, 1181–1196, 2022. https://doi.org/10.5194/tc-16-1181-2022. c
66 Wang, X.W. D. Voytenko and D. M. Holland. 2022. Accuracy Evaluation of Digital Elevation Model Derived from Terrestrial Radar Interferometer over Helheim Glacier, Greenland. Remote Sensing of Environment, Volume 268, 112759. https://doi.org/10.1016/j.rse.2021.112759. a
65 Liljedahl, L.C., Meierbachtol, T., Harper, J. et al. Rapid and sensitive response of Greenland’s groundwater system to ice sheet change. Nat. Geosci. 14, 751–755 (2021). https://doi.org/10.1038/s41561-021-00813-1. c
64 Rignot, E., An, L., Chauche, N., Morlighem, M., Jeong, S., Wood, M., et al. (2021). Retreat of Humboldt Gletscher, north Greenland, driven by undercutting from a warmer ocean. Geophysical Research Letters, 48, e2020GL091342. http://dx.doi.org/10.1029/2020GL091342. a
63 Choi, Y., Morlighem, M., Rignot, E., Wood, M. Ice dynamics will remain a primary driver of Greenland ice sheet mass loss over the next century. Commun Earth Environ 2, 26 (2021). https://doi.org/10.1038/s43247-021-00092-z. b
62 Riel, B., Minchew, B., and Joughin, I.: Observing traveling waves in glaciers with remote sensing: new flexible time series methods and application to Sermeq Kujalleq (Jakobshavn Isbræ), Greenland, The Cryosphere, 15, 407–429, https://doi.org/10.5194/tc-15-407-2021. c
61 An, L., Rignot, E., Wood, M., Willis, J. K., Mouginot, J., Khan, S. A. (2021). Ocean melting of the Zachariae Isstrøm and Nioghalvfjerdsfjorden glaciers, northeast Greenland. Proceedings of the National Academy of Sciences, 118 (2), e2015483118. https://doi.org/10.1073/pnas.2015483118. a
60 Wood, M., Rignot, E., Fenty, I., An, L., Bjørk, A., van den Broeke, M., Cai, C., Kane, E., Menemenlis, D., Millan, R., Morlighem, M., Mouginot, J., Noël, B., Scheuchl, B., Velicogna, I., Willis, J. K., Zhang, H. (2021). Ocean forcing drives glacier retreat in Greenland. Science Advances, Vol. 7, no. 1, eaba7282. https://doi.org/10.1126/sciadv.aba7282. a
59 Washam, P., Nicholls, K. W., Muenchow, A., & Padman, L. (2020). Tidal modulation of buoyant flow and basal melt beneath Petermann Gletscher Ice Shelf, Greenland. Journal of Geophysical Research: Oceans, 125, e2020JC016427. https://doi.org/10.1029/2020JC016427. a
58 Yang, J., Luo, Z., & Tu, L. (2020). Ocean access to Zachariæ Isstrøm glacier, northeast Greenland, revealed by OMG airborne gravity. Journal of Geophysical Research: Solid Earth, 125, e2020JB020281. https://doi.org/10.1029/2020JB020281. c
57 Gillard, L. C., Hu, X., Myers, P. G., Ribergaard, M. H., and Lee, C. M.: Drivers for Atlantic-origin waters abutting Greenland, The Cryosphere, 14, 2729–2753, 2020, https://doi.org/10.5194/tc-14-2729-2020. c
56 King, M.D., Howat, I.M., Candela, S.G. et al. Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat. Commun Earth Environ 1, 1 (2020). https://doi.org/10.1038/s43247-020-0001-2. c
55 D. Purnell, N. Gomez, N. H. Chan, J. Strandberg, D. M. Holland and T. Hobiger, "Quantifying the Uncertainty in Ground-Based GNSS-Reflectometry Sea Level Measurements," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 4419-4428, 2020. https://doi.org/10.1109/JSTARS.2020.3010413. b
54 Jakobsson, M., Mayer, L.A., Bringensparr, C. et al. The International Bathymetric Chart of the Arctic Ocean Version 4.0. Sci Data 7, 176 (2020). https://doi.org/10.1038/s41597-020-0520-9. a
53 Wang, Xianwei, and David M. Holland. An Automatic Method for Black Margin Elimination of Sentinel-1A Images over Antarctica. Remote Sensing 12, no. 7 (2020): 1175. https://doi.org/10.3390/rs12071175. a
52 Vaňková I, Nicholls KW, Xie S, Parizek BR, Voytenko D, Holland DM (2020). Depth-dependent artifacts resulting from ApRES signal clipping. Annals of Glaciology 61 (81), 108–113. https://doi.org/10.1017/aog.2020.56. a
51 Münchow, A., J. Schaffer, and T. Kanzow, 0: Ocean Circulation Connecting Fram Strait to Glaciers off North-East Greenland: Mean Flows, Topographic Rossby Waves, and their Forcing. J. Phys. Oceanogr., 0, https://doi.org/10.1175/JPO-D-19-0085.1. a
50 Joughin, I., Shean, D. E., Smith, B. E., and Floricioiu, D., A decade of variability on Jakobshavn Isbræ: ocean temperatures pace speed through influence on mélange rigidity , The Cryosphere, 14, 211–227, https://doi.org/10.5194/tc-14-211-2020. c
49 Vermassen, F., Bjørk, A. A., Sicre, M.‐A., Jaeger, J. M., Wangner, D. J., Kjeldsen, K. K., Siggaard‐Andersen, M., Klein, V., Mouginot, J., Kjær, K. H., Andresen, C. S. (2020). A Major Collapse of Kangerlussuaq Glacier's Ice Tongue Between 1932 and 1933 in East Greenland. Geophysical Research Letters, 47, e2019GL085954. https://doi.org/10.1029/2019GL085954. c
48 An, L., Rignot, E., Chauche, N., Holland, D., Holland, D., Jakobsson, M. et al. ( 2019). Bathymetry of southeast Greenland from Oceans Melting Greenland (OMG) data. Geophysical Research Letters, 46. https://doi.org/10.1029/2019GL083953. a
47 Pope, E. L., Normandeau, A., O Cofaigh, C., Stokes, C. R., Talling, P. J. 2019. Controls on the formation of turbidity current channels associated with marine-terminating glaciers and ice sheets. Marine Geology, 415, 105951. https://doi.org/10.1016/j.margeo.2019.05.010. c
46 Bevan, S. L., Luckman, A. J., Benn, D. I., Cowton, T., and Todd, J., Impact of warming shelf waters on ice mélange and terminus retreat at a large SE Greenland glacier, The Cryosphere, 13, 2303–2315, https://doi.org/10.5194/tc-13-2303-2019. c
45 M. D. Palmer, P. J. Durack, M. Chidichimo, J. A. Church, S. Cravatte, K. Hill, J. A. Johannessen J. Karstensen T. Lee, D. Legler, M. Mazloff, E, Oka, S. Purkey, B. Rabe, J. Sallée, B. M. Sloyan, S. Speich, K. von Schuckmann, J. Willis, S. Wijffels. Adequacy of the Ocean Observation System for Quantifying Regional Heat and Freshwater Storage and Change. Frontiers in Marine Science. Volume 6, Page 416, 2019. https://doi.org/10.3389/fmars.2019.00416. a
44 Moller, D., Hensley, S., Mouginot, J., Willis, J., Wu, X., Larsen, C., Rignot, E., Muellerschoen, R., Khazendar, A. Validation of Glacier Topographic Acquisitions from an Airborne Single-Pass Interferometer. Sensors 2019, 19(17), 3700. https://doi.org/10.3390/s19173700. a
43 Washam, P., Nicholls, K., Münchow, A., Padman, L. (2019). Summer surface melt thins Petermann Gletscher Ice Shelf by enhancing channelized basal melt. Journal of Glaciology. 65(252), 662-674. https://doi.org/10.1017/jog.2019.43. a
42 Xie, S., T.H. Dixon, D.M. Holland, D. Voytenko, and I. Vaňková. Rapid iceberg calving following removal of tightly packed pro-glacial melange. Nat Commun 10, 3250 (2019). https://doi.org/10.1038/s41467-019-10908-4. a
41 Vermassen, F., Andreasen, N., Wangner, D. J., Thibault, N., Seidenkrantz, M.-S., Jackson, R., Schmidt, S., Kjær, K. H., and Andresen, C. S.: A reconstruction of warm-water inflow to Upernavik Isstrøm since 1925 CE and its relation to glacier retreat, Clim. Past, 15, 1171–1186, 2019. https://doi.org/10.5194/cp-15-1171-2019. c
40 Mankoff, K. D., Colgan, W., Solgaard, A., Karlsson, N. B., Ahlstrøm, A. P., van As, D., Box, J. E., Khan, S. A., Kjeldsen, K. K., Mouginot, J., and Fausto, R. S.: Greenland Ice Sheet solid ice discharge from 1986 through 2017, Earth Syst. Sci. Data, 11, 769–786, 2019. https://doi.org/10.5194/essd-11-769-2019. c
39 Vermassen, F., Wangner, D.J., Dyke, L.M., Schmidt, S., Cordua, A.E., Kjær, K.H., Haubner, K. and Andresen, C.S. (2019), Evaluating ice‐rafted debris as a proxy for glacier calving in Upernavik Isfjord, NW Greenland. J. Quaternary Sci., 34: 258-267. https://doi.org/10.1002/jqs.3095. c
38 Bjørk, M., Millan, R., Morlighem, M., Noël, B., Scheuchl, B., Wood, M. Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proceedings of the National Academy of Sciences May 2019, 116 (19) 9239-9244. https://doi.org/10.1073/pnas.1904242116. b
37 Scheick, J., Enderlin, E.M., Miller, E.E., Hamilton, G. First-Order Estimates of Coastal Bathymetry in Ilulissat and Naajarsuit Fjords, Greenland, from Remotely Sensed Iceberg Observations. Remote Sens. 2019, 11, 935. https://doi.org/10.3390/rs11080935. a
36 Straneo, F., Sutherland, D. A., Stearns, L., Catania, G., Heimbach, P., Moon, T., Cape, Mattias R., Laidre, K. L., Barber, D., Rysgaard, S., Mottram, R., Olsen, S., Hopwood, M. J. and Meire, L. The Case for a Sustained Greenland Ice Sheet-Ocean Observing System (GrIOOS). Frontiers in Marine Science, 6, 138. 2019. https://doi.org/10.3389/fmars.2019.00138. c
35 Khazendar, A., I. Fenty, D. Carroll, A. Gardner, C. Lee, I. Fukumori, O. Wang, H. Zhang, H. Seroussi, D. Moller, B. Noël, M. van den Broeke, S. Dinardo, J. Willis. Interruption of two decades of Jakobshavn Isbrae acceleration and thinning as regional ocean cools. Nature Geosciencevolume 12, pages 277–283 (2019). https://doi.org/10.1038/s41561-019-0329-3. a
34 Bjørk, M., Millan, R., Morlighem, M., Noël, B., Scheuchl, B., Wood, M. Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proceedings of the National Academy of Sciences May 2019, 116 (19) 9239-9244. https://doi.org/10.1073/pnas.1904242116. a
33 Batchelor, C. L., Dowdeswell, J. A.,Rignot, E., & Millan, R. (2019).Submarine moraines in SoutheastGreenland fjords reveal contrastingoutlet‐glacier behavior since the LastGlacial Maximum. GeophysicalResearch Letters, 46, 3279–3286. https://doi.org/10.1029/2019GL082556. b
32 Morlighem, M., Wood, M., Seroussi, H., Choi, Y., and Rignot, E.: Modeling the response of northwest Greenland to enhanced ocean thermal forcing and subglacial discharge, The Cryosphere, 13, 723-734, 2019. https://doi.org/10.5194/tc-13-723-2019. b
31 An L, Rignot E, Millan R, Tinto K, Willis J. Bathymetry of Northwest Greenland Using “Ocean Melting Greenland” (OMG) High-Resolution Airborne Gravity and Other Data. Remote Sensing. 2019; 11(2):131. https://doi.org/10.3390/rs11020131. a
30 Hunt, J.D., Byers, E. Reducing sea level rise with submerged barriers and dams in Greenland. Mitig Adapt Strateg Glob Change 24, 779–794 (2019). https://doi.org/10.1007/s11027-018-9831-y. c
29 Slabon et al., Submarine geomorphology of northeast Baffin Bay and its implications for local paleo-ice sheet dynamics, Geomorphology Volume 318, 1 October 2018, Pages 88-100. https://doi.org/10.1016/j.geomorph.2018.06.007. c
28 Washam, P., A. Münchow, and K.W. Nicholls. 2018. A Decade of Ocean Changes Impacting the Ice Shelf of Petermann Gletscher. Greenland. J. Phys. Oceanogr. 48, 2477–2493. https://doi.org/10.1175/JPO-D-17-0181.1. a
27 Vaňková, I., D. Voytenko, K.W. Nicholls, S. Xie, B.R. Parizek, and D.M. Holland (2018). Vertical structure of diurnal englacial hydrology cycle at Helheim Glacier, East Greenland. Geophysical Research Letters. https://doi.org/10.1029/2018GL077869. a
26 Porter DF, Tinto KJ, Boghosian AL, Csatho BM, Bell RE and Cochran JR (2018). Identifying Spatial Variability in Greenland’s Outlet Glacier Response to Ocean Heat. Front. Earth Sci. 6:90. doi: 10.3389/feart.2018.00090. https://doi.org/10.3389/feart.2018.00090. a
25 Wood M., E. Rignot, I. Fenty, D. Menemenlis, R. Millan, M. Morlighem, J. Mouginot, H. Seroussi. 2018. Ocean‐Induced Melt Triggers Glacier Retreat in Northwest Greenland. Geophysical Research Letters, 45, 8334–8342. https://doi.org/10.1029/2018GL078024. a
24 Willis, J.K., D. Carroll, I. Fenty, G. Kohli, A. Khazendar, M. Rutherford, N. Trenholm, and M. Morlighem. 2018. Ocean-ice interactions in Inglefield Gulf: Early results from NASA’s Oceans Melting Greenland mission. Oceanography 31(2). https://doi.org/10.5670/oceanog.2018.211. a
23 Dyke, Laurence M, Anna LC Hughes, Camilla S Andresen, Tavi Murray, John F Hiemstra, Anders A Bjørk, and Ángel Rodés. The deglaciation of coastal areas of southeast Greenland. The Holocene. 2018;28(9):1535-1544. https://doi.org/10.1177%2F0959683618777067. c
22 Tang, W., S. Yueh, D. Yang, A. Fore, A. Hayashi, T. Lee, S. Fournier, and B. Holt, 2018. The potential and challenges of using SMAP SSS to monitor Arctic Ocean freshwater changes. Remote Sens., doi:10.3390/rs10060869, June 2018. http://www.mdpi.com/2072-4292/10/6/869. c
21 Wang, Xianwei, and David M. Holland. "A Method to Calculate Elevation-Change Rate of Jakobshavn Isbrae Using Operation IceBridge Airborne Topographic Mapper Data." IEEE Geoscience and Remote Sensing Letters 15, no. 7 (2018): 981-985. https://doi.org/10.1109/LGRS.2018.2828417. a
20 Xie S., T.H. Dixon, D. Voytenko, F. Deng, and D.M. Holland (2018). Grounding line migration through the calving season at Jakobshavn Isbrae, Greenland, observed with terrestrial radar interferometry (2018). The Cryosphere. 12, 1387-1400. https://doi.org/10.5194/tc-12-1387-2018. a
19 An, L., Rignot, E., Mouginot, J., and Millan, R. (2018). A century of stability of Avannarleq and Kujalleq glaciers, West Greenland, explained using high‐resolution airborne gravity and other data. Geophysical Research Letters, 45. https://doi.org/10.1002/2018GL077204. a
18 R. Millan, E. Rignot, J. Mouginot, M. Wood, A.A Bjørk, and M. Morlighem (2018). Vulnerability of Southeast Greenland glaciers to warm Atlantic Water from Operation IceBridge and Ocean Melting Greenland data. Geophys. Res. Lett., 45. doi:10.1002/2017GL076561. http://dx.doi.org/10.1002/2017GL076561. a
17 P. Slabon, B. Dorschel, W. Jokat, F. Freire. Bedrock morphology reveals drainage network in northeast Baffin Bay. Geomorphology, Volume 303, 2018, Pages 133-145, ISSN 0169-555X. https://doi.org/10.1016/j.geomorph.2017.11.024. c
16 Vaňková, I., & Holland, D. M. (2017). A model of icebergs and sea ice in a joint continuum framework. Journal of Geophysical Research: Oceans, 122(11), 9110-9125. https://doi.org/10.1002/2017JC013012. a
15 Y. Choi, M. Morlighem, E. Rignot, J. Mouginot, M. Wood. Modeling the Response of Nioghalvfjerdsfjorden and Zachariae Isstrøm Glaciers, Greenland, to Ocean Forcing Over the Next Century. DOI: 10.1002/2017GL075174. https://doi.org/10.1002/2017GL075174. c
14 Morlighem M. et al., (2017), BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multi-beam echo sounding combined with mass conservation, Geophys. Res. Lett., 44, doi:10.1002/2017GL074954. https://doi.org/10.1002/2017GL074954. b
13 Kjeldsen, K. K., Weinrebe, R. W., Bendtsen, J., Bjørk, A. A., and Kjær, K. H.: Multibeam bathymetry and CTD measurements in two fjord systems in southeastern Greenland, Earth Syst. Sci. Data, 9, 589–600, 2017. https://doi.org/10.5194/essd-9-589-2017. c
12 Voytenko, D., Dixon, T. H., Holland, D. M., Cassotto, R., Howat, I. M., Fahnestock, M. A., Truffer, M., & De la Pena, S. (2017). Acquisition of a 3 min, two-dimensional glacier velocity field with terrestrial radar interferometry. Journal of Glaciology, 63(240), 629-636. https://doi.org/10.1017/jog.2017.28. a
11 Konstanze Haubner, Jason E. Box, Nicole J. Schlegel, Eric Y. Larour, Mathieu Morlighem, Anne M. Solgaard, Kristian K. Kjeldsen, Signe H. Larsen, and Kurt H. Kjaer. Simulating ice thickness and velocity evolution of Upernavik Isstrøm 1849–2012 by forcing prescribed terminus positions in ISSM. https://doi.org/10.5194/tc-2017-121. c
10 Cai, C., E. Rignot, D. Menemenlis, and Y. Nakayama (2017), Observations and modeling of ocean-induced melt beneath Petermann Glacier Ice Shelf in northwestern Greenland, Geophys. Res. Lett., 44, 8396–8403, doi:10.1002/2017GL073711. https://dx.doi.org/10.1002/2017GL073711. b
9 C.L. Batchelor, J.A. Dowdeswell, E. Rignot, Submarine landforms reveal varying rates and styles of deglaciation in North-West Greenland fjords, In Marine Geology, 2017, ISSN 0025-3227, https://doi.org/10.1016/j.margeo.2017.08.003. b
8 Williams, C., S. Cornford, T. Jordan, J. Dowdeswell, M. Siegert, C. Clark, D. Swift, A. Sole, I. Fenty, and J. Bamber. 2016. Generating synthetic fjord bathymetry for coastal Greenland. The Cryosphere, 11, 363-380, 2017. doi:10.5194/tc-11-363-2017. https://doi.org/10.5194/tc-11-363-2017. b
7 Münchow, A., L. Padman, P. Washam, and K.W. Nicholls. 2016. The ice shelf of Petermann Gletscher, North Greenland, and its connection to the Arctic and Atlantic Oceans, Oceanography 29(4):84–95, https://doi.org/10.5670/oceanog.2016.101. a
6 Fenty, I., J.K. Willis, A. Khazendar, S. Dinardo, R. Forsberg, I. Fukumori, D. Holland, M. Jakobsson, D. Moller, J. Morison, A. Münchow, E. Rignot, M. Schodlok, A.F. Thompson, K. Tinto, M. Rutherford, and N. Trenholm. 2016. Oceans Melting Greenland: Early results from NASA’s ocean-ice mission in Greenland. Oceanography 29(4):72–83, https://doi.org/10.5670/oceanog.2016.100. a
5 Morlighem, M., E. Rignot, and J.K. Willis. 2016. Improving bed topography mapping of Greenland glaciers using NASA’s Oceans Melting Greenland (OMG) data. Oceanography 29(4):62–71, https://doi.org/10.5670/oceanog.2016.99. b
4 Holland, D.M., D. Voytenko, K. Christianson, T.H. Dixon, M.J. Mei, B.R. Parizek, I. Vaňková, R.T. Walker, J.I. Walter, K. Nicholls, and D. Holland. (2016). An intensive observation of calving at Helheim Glacier, East Greenland. Oceanography, 29(4), 46-61. https://doi.org/10.5670/oceanog.2016.98. a
3 Willis, J.K., E. Rignot, R.S. Nerem, and E. Lindstrom. 2016. Introduction to the special issue on ocean-ice interaction. Oceanography 29(4):19-21, https://doi.org/10.5670/oceanog.2016.95. a
2 Laidre et al. (2016), Use of glacial fronts by narwhals (Monodon monoceros) in West Greenland, Biology Letters, 12: 20160457. https://dx.doi.org/10.1098/rsbl.2016.0457. c
1 E. Rignot, Y. Xu, D. Menemenlis, J. Mouginot, B. Scheuchl, X. Li, M. Morlighem, H. Seroussi, M. van den Broeke, I. Fenty, C. Cai, L. An, B. de Fleurian (2016), Modeling of ocean-induced ice melt rates of five west Greenland glaciers over the past two decades, Geophys. Res. Lett., 43, 6374–6382, doi:10.1002/2016GL068784. https://doi.org/10.1002/2016GL068784. a
Category Description   Number of Papers
a Papers where first Author was directly supported by OMG funding.   35
b Papers with at least one OMG Co-I listed as a co-author, but where the lead author was not an OMG co-I.   13
c Papers from outside the OMG Science Team community.   23
    Total 71